skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lampen, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finite element models of the knee can be used to identify regions at risk of mechanical failure in studies of osteoarthritis. Models of the knee often implement joint geometry obtained from magnetic resonance imaging (MRI) or gait kinematics from motion capture to increase model specificity for a given subject. However, differences exist in cartilage material properties regionally as well as between subjects. This paper presents a method to create subject-specific finite element models of the knee that assigns cartilage material properties from T2 relaxometry. We compared our T2-refined model to identical models with homogeneous material properties. When tested on three subjects from the Osteoarthritis Initiative data set, we found the T2-refined models estimated higher principal stresses and shear strains in most cartilage regions and corresponded better to increases in KL grade in follow-ups compared to their corresponding homogeneous material models. Measures of cumulative stress within regions of a T2-refined model also correlated better with the region's cartilage morphology MRI Osteoarthritis Knee Score as compared with the homogeneous model. We conclude that spatially heterogeneous T2-refined material properties improve the subject-specificity of finite element models compared to homogeneous material properties in osteoarthritis progression studies. Statement of Clinical Significance: T2-refined material properties can improve subject-specific finite element model assessments of cartilage degeneration. 
    more » « less